Infrared spectroscopic study of O2 interaction with carbon nanotubes.
نویسندگان
چکیده
Infrared reflection-absorption spectroscopic measurements have been performed on single-wall carbon nanotubes (SWNTs), cleaned by heating to approximately 500 degrees C in vacuo, during exposure to pure 16O2 or 18O2 at room temperature and at pressures of up to approximately 630 Torr. No vibrational signature of any form of adsorbed O is detected. However, structure is seen which is very similar to that observed for the adsorption of atomic H or D and which indicates changes in the SWNT vibrational spectrum. The close similarity between the spectra for atomic H and D, on one hand, and O2 on the other is an unexpected result. Changes are also noted in the broad background extending throughout the mid-IR which arises from the Drude contribution to the reflectance. All these effects increase with O2 exposure and are essentially irreversible upon evacuation of the gas. The results are consistent with other data indicating that O2 interacts only weakly with, and does not chemisorb on, pristine regions of the SWNT under these conditions. The small and irreversible effects seen upon O2 exposure are interpreted in terms of enhanced chemisorption, at or near defective regions of the SWNT wall, which saturates at a low O coverage.
منابع مشابه
A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes
The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...
متن کاملPreparation and Characterization of Multiwalled Carbon Nanotubes-Polythiophene Nanocomposites and its Gas Sensitivity Study at Room Temperature
The nanocomposites of polythiophene and carboxylated multiwalled carbon nanotubes (MWCNTs) were synthesized by in-situ chemical oxidative polymerization method using anhydrous ferric chloride (FeCl3) as an oxidant. The MWCNTs functionalized and ultrasonicated to obtain uniform dispersion within the polythiophene matrix. Field emission scanning electron microscopy was used to characterize the mo...
متن کاملA Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes
The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...
متن کاملInvestigation of Sup90-Dota and interaction with Carbon nanotubes; A Semi-empirical study
The investigation of the anticancer drugs will be important because of the proliferation ofcancer. We want to take steps to improve public health. The combination of two carbon nanotubes (singlewall nanotube and multi-wall nanotube) and Sup90-Dota (an anticancer drug) was investigated basedon Molecular Mechanic and Semi-Empirical methods. Our goal is to investigate the transfe...
متن کاملStudy on interaction between carbon nanotubes (CNTs) as nano carrier for loading and delivery of Methotrexate
The Methotrexate delivery by carbon nanotubes (CNTs) and the structural changes of drugcombination upon the carbon nanotubes and bio thermodynamic of the drug have been studied by molecularcomputational methods. Computational molecular methods have been fulfilled by molecular mechanics methods with four force field, and semi empirical with all methods. We investigate different param...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 22 5 شماره
صفحات -
تاریخ انتشار 2006